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Abstract. Stochastic global optimization methods are used together with problem-specific
heuristics to find configurations ofn equal point charges on a circular disk such that the potential
energy is minimized. Previous such optimal or conjecturally optimal configurations have been
published only forn 6 23 andn = 29, 30, 50. Earlier results are examined and the best currently
known configurations—most of them new—forn 6 80 are presented.

1. Introduction

The question: What is the minimum-energy configuration ofn equal point charges on
a circular disk? was raised in 1985 by Berezin [1]. It appeared that in the optimal
configuration not all the charges are located on the disk boundary whenn > 12 (for
proofs of this fact, see [2–5]). Berezin’s original note was followed by a wave of scientific
correspondence, where it was discussed whether the charges actually behave ‘differently’
when they are confined on a circular disk instead of a sphere [6–14].

In [6, 11] it was shown that a (non-optimal) configuration of 17 charges where two
charges are placed on the interior of the disk has lower energy than the configuration
with 16 charges evenly spaced on the disk boundary and one in the centre of the disk.
When the number of charges approaches infinity, the problem tends to the well known
problem of charge distribution over a conducting disk [15] with charge density proportional
to (1− r2)−1/2, wherer is the distance from the centre of the disk [16, 17].

While no practical applications in physical systems have yet been presented for this kind
of minimum-energy configurations, finding minimum-energy configurations is an interesting
global optimization problem. It has turned out to be difficult to solve and methods developed
for finding optimal charge configurations can probably also be adapted to some other
configuration optimization problems.

1.1. Earlier results

The first calculations to find the globally optimal, least energy configurations forn > 12
were performed in [18] (n 6 20), [16] (n 6 17, n = 29, 30) and [19] (n 6 23, n = 50).

Wille and Vennik [19] used a simulated annealing algorithm (see also [20, 21]) and
failed to find the globally optimal configurations forn = 16, 17, 18, 21, 22, 23, which
partly reflects the difficulty of this problem whenn grows. In our opinion the failures in
[19] (cf [22]) were caused mainly by high potential barriers between solutions with different
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numbers of points on the disk boundary; later in this paper we try to overcome this difficulty
by systematically choosing initial solutions with a different number of charges on the disk
boundary, see section 2.2.

Munera [18] and Queen [16] both restricted the structure of the configurations to consist
of concentric rings of charges. The energy of a configuration is usually insensitive to the
precise angular coordinates of charges [16], thus the optimal configurations are found by
assigning a suitable number of charges on the periphery of each concentric ring and then
finding the radii of the rings that minimize the potential energy. Munera [18] failed to find
the optimal solutions forn = 17, 19, 20 and the energy forn = 18 was inaccurate. Queen
[16] applied this approach more successfully and found conjecturally optimal configurations
for n 6 17 andn = 29, 30. The difficulty in this approach is to decide how many concentric
rings to use and how many charges to assign to each ring. Furthermore, in view of the
results in this paper, whenn is sufficiently large, the concentric ‘rings’ are not always
exactly circular in an equilibrium configuration.

Since [22] no more tables or figures of (conjecturally) optimal charge configurations have
been published. In this work we will partially fill that gap in the literature by presenting
a number of conjecturally optimal, or conjecturalground-stateconfigurations of up to 37
charges and the best configurations found of up to 80 charges. We expect the vast majority
of these configurations to also be optimal.

The optimization methods that we have used can be classified as probabilistic global
optimization methods [23], which cannotguaranteethat the best solutions found are globally
optimal. We must bear in mind that the number of variables in many problem instances
of this paper is relatively high, thus we cannot expect that the current deterministic global
optimization methods can solve this problem completely.

It appears that when the number of charges is increased there are many local optima
with high potential barriers between them. An outline for a catastrophe theoretical model
relating different locally optimal configurations has been presented in [24].

1.2. Related problems

A related problem of packing charges on the surface of a sphere (or equivalently, in the
sphere [6]) has been studied for a longer time, and it is known as Thomson’s problem
[25]. For Thomson’s problem many extensive tables exist in the literature. The first
computer search for stable configurations was performed in the 1950s by Cohn [26]. A
few configurations were discussed in [27]. More solutions were published in the 1980s
[18, 28–30], but the most extensive tables have appeared in the last few years [31–36]. As
so often when trying to find global optima in a difficult multimodal optimization problem,
several conjectured global optima have turned out to be only local optima, see for example
[31, 37, 38]. Some authors restrict the solutions, or sometimes just the initial solutions,
to have certain symmetries [18, 33], in which case the optimization problem may be
significantly easier. But if the globally optimal configuration does not have such a required
symmetry, then it cannot be found by that kind of a method. Examples can be found by
comparing [18, 30, 39]. Hardin, Sloane and Smith are preparing a book on spherical codes,
and they also maintain tables containing the best currently known solutions to Thomson’s
problem. The tables are available on the World Wide Web through Neil Sloane’s home
page at〈URL:http://www.research.att.com/∼njas/〉.

It is also possible to consider non-coulombic potentials when searching for optimal
configurations in a sphere or on a circular disk [6, 9, 11, 40–44]. When the repulsion forces
are central and only distance dependent, Leech [45] showed that on the surface of the sphere
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the only configurations which are in equilibrium under all such laws of repulsion are those
that have some rotational symmetry about every diameter through particles of the system,
see also [27].

Other related problems are those of packing circles on a disk [46], on a sphere [47–
49], or on a hypersphere [50]. Packing equal circles can be thought of as finding optimal
configurations for sets of points with a repulsion force which increases very rapidly as the
distance decreases, i.e. the shortest distance determines the potential energy of the system.

Physical experiments have been made with equal parallel cylindrical bar magnets on an
air table [51], where the potential is slightly different, because instead ofd−2 the repulsion
force is proportional (to a considerable degree of accuracy) to

1

d2
− d

(d2+ h2)3/2

whereh is the distance between the point poles of the supposedly rigid magnetic dipole
and d is the distance between the magnets. As noted in [51], this problem was studied
experimentally in the last century by Mayer. Experiments with small charged conductive
balls were carried out in [52].

2. The optimization methods used in this work

We denote a point charge configuration in the plane byC = {p1,p2, . . . ,pn}, where the
points lie on a circular disk of unit radius centred in the origin, i.e.‖pi‖ 6 1. The energy
function to be minimized is

E(C) =
∑

16i<j6n
‖pi − pj‖−1. (1)

This corresponds to minimizing the potential energy when there is a coulombic repulsion
force between each pair of equal point charges.

Because (1) is a nonlinear, non-convex function, the problem of finding global optima
can be very hard. A related, more general problem of determining the ground states of
atom clusters with artificial central-body forces is NP-hard (non-deterministic polynomial-
time hard) [53].

All the optimization algorithms that we have used in this work select a suitable set
of initial solutions and then apply a local optimization algorithm to each solution. The
algorithms described below can be regarded as probabilistic global optimization algorithms
and they differ only in the selection of the initial solutions. In all the computations we have
used a truncated Newton method TN/TNBC [54] as a local optimizer.

2.1. Algorithm A1: Multistart with initial solutions from the infinite case

In the first approach we simply take random initial solutions and perform a local optimization
run for each solution; then we take the best solution found. This is the multistart algorithm.

When the number of chargesn tends to infinity (it is assumed that the total charge is
constant), the limit density of charges when the potential energy is minimized is

f (r) = K

2π
√

1− r2
(2)

whereK is the total charge on the disk andr is the distance from the centre of the unit radius
disk [16]. In the first approach we take the random initial solutions from the distribution
defined byf (r).
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Even this simple approach was able to find most of the configurations in section 3,
including all of those in [22] that were not found in [19].

Using the results found with this approach we can further develop the selection of
initial solutions. When selecting the initial solutions, the number of points near the disk
boundary is crucial, because if a charge is caught on the boundary, a strictly descent [55]
local optimization algorithm cannot push it back on the interior of the disk.

If we manage to estimate reasonably well the number of charges on the boundary in
the optimal configuration, we can use an initial solution with that number of charges on the
boundary, thus reducing the number of variables and speeding up the optimization process
considerably.

2.2. Algorithm A2: Multistart with heuristic initial solutions

In the second approach we take the best configuration ofn charges found so far and assume
that the number of charges on the disk boundary (denote this byñ0) is approximately the
same as in the (possibly still unknown) optimal configuration.

Now we form the initial solutions first by puttingb, ñ0−δ 6 b 6 ñ0+δ, charges evenly
spaced on the disk boundary, whereδ is an integer constant reflecting our confidence in the
quality of the solutions found so far. Then we distribute the remaining charges according
to (2), when the number of the charges on the boundary is taken into account. In the
computations we usedδ = 6; in no case the best configuration found (see section 3) had a
greater deviation from̃n0 than 2.

2.3. Algorithm A3: Multilevel single linkage

One weakness of the multistart algorithm is that it repeatedly performs optimization runs
with initial solutions that are in the same region of attraction [55]. One way of overcoming
this problem is to store the initial solutions and start a new optimization run only if no
better initial solution has been sampled in the neighbourhood of the new initial solution.
This idea has been developed into themultilevel single linkage(MLSL) algorithm [56].

As the third optimization approach in this paper we have used a reduced sample
version of MLSL, which is depicted in figure 1. At each major iteration the algorithm
takesN random charge configurations (with the same distribution as in algorithm A2)
and calculates their energies, so in thekth round of the algorithm we have a total ofkN
random configurations. From thesekN configurations we take theγ kN best (lowest energy)
configurations, where 0< γ 6 1; these configurations are thereduced sample. For each
configuration in the reduced sample we check if there is a better configuration at a distance
which is less than or equal to the thresholdr. If no such better configuration exists, we
perform a local optimization run starting from the configuration in the reduced sample.

The threshold valuer for deciding whether a configuration is ‘near’ another configuration
is gradually decreased during the optimization run as the number of configurations is
increased. Note that even if at one time a local optimization run is not started from a
certain configuration, this decision may be revoked later when the threshold value has
become smaller. It is necessary to store the results of the local optimization runs so that no
more than one optimization run is applied to a single initial solution.

When using the standard Euclidean vector norm as the distance function between
solutions, we can get very high distances between solutions that are essentially the same,
obtained from each other by permuting the points and rotating or reflecting the configuration.
This observation leads to the key idea in our adaptation of MLSL: we use a special heuristic
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Figure 1. Multilevel single linkage algorithm.

distance function that tries to compensate the difficulties caused by different orientations
of the solutions and different permutations of the points. Let us first consider different
permutations of the points. We take two configurations, denote these byS andT , and for
each point of the configurations we find the nearest neighbour in the other configuration.
We define the distance function

d(S, T ) =
n∑
i=1

min
j
‖si − tj‖2+

n∑
i=1

min
j
‖ti − sj‖2

which clearly equals 0 ifS andT are obtained from each other by just permuting the points.
Now, two initial solutionsS and T with the same numberb of points on the disk

boundary are compared by calculating theb rotations ofS that make the boundary points
coincide with those ofT . Then we calculate the reflection ofS, and after anothern rotations
we select the smallest distance betweenT and the rotations and reflections ofS. Clearly,
this approach gives distance 0 wheneverS is a (possibly reflected) rotation ofT . If S and
T have a different number of points on the disk boundary, they are considered as having
infinite mutual distance and thus the distance function partitions the solution space into
disjoint subsets infinitely far from each other.

With our heuristic distance function the formula in [56, equation (2)] for critical distance
r cannot be used directly. As the critical distancer between two solutionsS andT we use

r = c
(

logp

p

)1/u

(3)

whereu is the number of variables and a suitable value for the constantc is determined
experimentally. The number of sampled initial solutions in the solution space partition
containingS andT is denoted byp—we keep a separate critical distance for each partition.
If S and T are in different partitions, then they are considered as having infinite mutual
distance and the value ofr does not matter. Our method can be seen as if we were running
an MLSL algorithm on each solution space partition in parallel, giving the computing
resources to the most promising initial solutions. If there is only one partition, then (3) and
equation (2) in [56] give the same critical distances for each iteration step when the value
of c is selected suitably.

The problem of determining a suitable stopping criterion is a very hard problem in
global optimization. We have simply limited the number of major iterations of MLSL and
the number of local optimization runs; the algorithm stops when either of these limits is
reached.
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Table 1. Energies of the configurations.

n E n E n E

12 59.575 675 35 672.342 18 58 2008.0682
13 71.807 362 36 715.068 32 59 2083.0334
14 85.347 290 37 759.342 75 60 2159.3584
15 100.220 96 38 804.920 00 61 2237.1926
16 116.452 00 39 851.911 30 62 2316.2518
17 133.816 52 40 900.118 72 63 2396.9504
18 152.477 90 41 949.851 58 64 2478.9810
19 172.494 82 42 1000.825 4 65 2562.5685
20 193.629 80 43 1053.304 5 66 2647.4781
21 216.179 11 44 1107.079 4 67 2733.9499
22 240.121 68 45 1162.330 4 68 2821.6862
23 265.201 04 46 1218.980 8 69 2910.8539
24 291.727 83 47 1277.007 0 70 3001.4558
25 319.665 51 48 1336.375 2 71 3093.5796
26 348.770 89 49 1397.200 9 72 3187.0854
27 379.353 32 50 1459.582 1 73 3281.8499
28 411.344 31 51 1523.209 2 74 3378.1982
29 444.547 75 52 1588.206 5 75 3475.8612
30 479.079 57 53 1654.657 8 76 3575.2077
31 514.917 13 54 1722.684 2 77 3675.7938
32 552.269 74 55 1791.973 7 78 3777.8992
33 590.806 30 56 1862.649 7 79 3881.4275
34 630.834 38 57 1934.738 5 80 3986.2335

3. Results

The lowest-energy configurations of 12–80 charges found during this research are depicted
in figures 2–5.

The energies of the configurations are tabulated in table 1, whereE is the energy of
the configuration. The best previously published energies for configurations withn 6 23,
n = 29, 30 [16, 18, 19, 22] coincide with the values in our table. In [19] a figure of a
configuration of 50 charges was shown, but the energy was not given. By visual inspection
the configuration looks similar to the one in figure 3. No results have been previously
published for other values ofn.

Many of the configurations seem to have symmetries. However, since the optimization
process can provide the coordinates of the points only with limited accuracy, it is difficult
to say for certain from the numerical results directly when a configuration has a symmetry.
It is not precluded that an optimal (or best currently known) configuration is onlyalmost
symmetrical. Such examples have been found in circle packings, see for example the
packings of 36 and 53 circles in a circle [46]. In [46] the coordinates of each circle of the
packing were solved numerically with very high precision before determining the symmetry
group.

It would be very interesting to see how our MLSL approach works when the charges
are confined in a sphere instead of a circular disk, but unfortunately the heuristic initial
solutions and distance function cannot be easily extended to the case of a sphere.

When comparing the optimization algorithms of this paper we note that the multistart
algorithm with heuristic initial solutions worked so well that it found all the configurations in
figures 2–5 except the configuration of 55 charges, which was only found by MLSL. How-
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n = 12 n = 13 n = 14 n = 15

n = 16 n = 17 n = 18 n = 19

n = 20 n = 21 n = 22 n = 23

n = 24 n = 25 n = 26 n = 27

n = 28 n = 29 n = 30 n = 31

Figure 2. Configurations of 12–31 charges.

ever, fewer local optimization runs were needed when using MLSL, so it is clear that MLSL
with a heuristic distance function is better when only a limited number of optimization runs
can be performed. Our initial approach using multistart with initial solutions from the infinite
case is clearly inferior to both of the more advanced approaches, but it is needed to provide
an initial estimate for the number of charges on the disk boundary in the optimal case.
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n = 32 n = 33 n = 34 n = 35

n = 36 n = 37 n = 38 n = 39

n = 40 n = 41 n = 42 n = 43

n = 44 n = 45 n = 46 n = 47

n = 48 n = 49 n = 50 n = 51

Figure 3. Configurations of 32–51 charges.

If the plane is filled with point charges with constant charge density, the hexagonal
lattice is the lowest-energy configuration [57]. However, when the charges are confined to
a bounded area, the shape of the area determines the structure of the optimal configurations.
It has been supposed that the optimal configurations on a circular disk consist of charges
arranged in concentric rings, charges spaced evenly on each ring [16, 19]. Approximately,
this seems to be the case in the configurations of this work, as well. This observation can
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n = 52 n = 53 n = 54 n = 55

n = 56 n = 57 n = 58 n = 59

n = 60 n = 61 n = 62 n = 63

n = 64 n = 65 n = 66 n = 67

n = 68 n = 69 n = 70 n = 71

Figure 4. Configurations of 52–71 charges.

be used to construct special initial solutions consisting of a few concentric rings of charges
[16, 22]. We have deliberately avoided this structure in the initial solutions, since it is not
known how well this structure is preserved whenn is increased.

It is interesting to find out which configurations in figures 2–5 are in equilibrium under
any law of repulsion. To do this we prove a theorem analogous to that in [45]. By ‘law of
repulsion’ we mean a repulsive force between two points that only depends on the distance



1044 K J Nurmela

n = 72 n = 73 n = 74 n = 75

n = 76 n = 77 n = 78 n = 79

n = 80

Figure 5. Configurations of 72–80 charges.

between the points, i.e. the magnitude of the force betweenpi andpj is v(‖pi−pj‖), where
v(d) is any function such thatv(d) > 0 for all d > 0.

Theorem 1.The configurations ofn > 2 points on a circular disk that are in equilibrium
under any law of repulsion are exactly:

(i) n points evenly spaced on the disk boundary, and
(ii) n− 1 points evenly spaced on the disk boundary and one point in the centre of the

disk. In this case we requiren > 2.

Proof. A configuration is in equilibrium if and only if each of the points is in equilibrium,
i.e. the resultant of the repulsive forces on the point is zero, or the point is on the disk
boundary and the resultant is perpendicular to the tangent of the disk boundary at that point.

Assume for the rest of the proof that we have a configuration that is in equilibrium
under any law of repulsion and thus all points are in equilibrium whatever the repulsion
law may be.

The first part of the proof will show that there can be at most one point in the interior
of the disk and if it exists, it must be located in the centre of the disk. Let us assume that
there is a pointp not on the disk boundary. Now all the other points must be on one or
more concentric circles centred inp, we call these circlesshells.

We can take the shells with the greatest radiusr aroundp. This shell must clearly
contain at least two points, because otherwisep would not be in equilibrium (take a potential
function v(d) = 1, if d = r and v(d) = 0 otherwise). Furthermore, if we take any 180◦
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Figure 6. First part of proof.

arc of the shell, it must contain at least one point. Now, suppose there were another shell
aroundp apart froms, denote this shell bys ′. This shells ′ contains by definition at least
one pointp′ (see figure 6). As noted before, there must be at least one point on the 180◦

arc of s directly acrossp′ (shown as the heavy curve in figure 6). It follows thatp′ must
have a shells ′′ with radiusr ′′ such thatr ′′ > r, and because all the points are confined in
s, there must be an empty arc greater than 180◦ on s ′′; thusp′ is not in equilibrium under
all repulsion laws.

Hence, if there is a pointp in the interior of the disk, then there must be at least
two other points and they must all lie on a single circle whose centre coincides withp.
Furthermore, this circle must coincide with the disk boundary, otherwise the points on it
could not be in equilibrium under coulombic repulsion force.

As the second step we show that the points on the disk boundary must be evenly spaced.
As shown before, there must be at least two points on the boundary. We take two points
on the boundary with the smallest mutual distance, let them beb1 andb2. Now if there is
a point in the centre of the disk, it cannot contribute any tangential force to the points on
the boundary, so there must be a pointb3 located on the boundary on the other side ofb2

such that‖b1 − b2‖ = ‖b2 − b3‖. If such b3 does not exist, thenb2 is not in equilibrium
under repulsion force that varies according tov(d) = 1 whend = ‖b1− b2‖ andv(d) = 0
otherwise. Similarly we can infer the existence ofb4, b5, . . . until bi = b1 for somei.

We have now shown that no such configuration that is in equilibrium under all
repulsion laws exists except possibly the two types mentioned in theorem 1. By symmetry
considerations it is clear that all those configurations are in equilibrium under any potential
that depends only on the distance between points. �

Using the theorem we find out that the best configurations ofn 6 16 charges are
equilibrium configurations under any law of repulsion. They are also locally optimal
circle packings, but of them only the configurations of up to six charges, all of type 1 in
theorem 1, are at the same time globally optimal circle packings (see [46] and its references).
Whenn = 6 there exists another globally optimal packing of circles that is not a globally
optimal charge configuration. We conjecture that the optimal circle packings and charge
configurations are different for alln > 6.
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